
INTERNATIONAL ECONOMIC REVIEW
Vol. 43, No. 4, November 2002

A MODEL OF PROCEDURAL DECISION MAKING
IN THE PRESENCE OF RISK∗

BY JUAN DUBRA AND EFE A. OK1

Department of Economics, New York University, Universidad de Montevideo;
Department of Economics, New York University

We introduce a procedural model of risky choice in which an individual is
endowed with a core preference relation that may be highly incomplete. She
can, however, derive further rankings of alternatives from her core preferences
by means of a procedure based on the independence axiom. We find that the
preferences that are generated from an initial set of rankings according to this
procedure can be represented by means of a set of von Neumann–Morgenstern
utility functions, thereby allowing for incompleteness of preference relations. The
proposed theory also yields new characterizations of the stochastic dominance
orderings.

1. INTRODUCTION

While the expected utility theory is still very widely used, a number of inter-
esting decision theories that generalize the expected utility paradigm have been
recently developed. For the large part, these theories axiomatically devise pref-
erence functionals that do not necessarily take the expected utility form, but that
nevertheless lead to the ranking of all lotteries by the individuals. Surprisingly,
the alternative path of generalization in which the expected utility form of the
preference functionals is retained, but a degree of incompleteness is allowed, has
not been pursued, the seminal contributions of Aumann (1962) and Bewley (1986)
being two major exceptions. This is somewhat unfortunate, because incomplete
preferences are not only descriptively plausible, but they also conveniently leave
room for introducing to the theory empirically observed behaviors like status quo
bias and loss aversion (Bewley, 1986; Mandler, 1999).2
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2 There are several conceptual arguments that have been put forth in the literature in favor of
incomplete preferences. For example, it has been justly argued that allowing for such preferences in
multicriteria decision problems is in the nature of things. Since Aumann (1962) and Bewley (1986),
inter alia, go through these arguments in considerable detail, we shall not reproduce them here. As a
historical note, however, we would like to mention that the overly restrictive nature of the completeness
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Our interest in incomplete preferences stems from the fact that such preferences
allow one to introduce “procedural” elements into the decision-making analysis.
Procedural rationality maintains that individuals often use some form of reasoning,
or a deduction process, when “solving” the choice problems they face. While it
is difficult to argue against this alternative notion of rationality, especially from
a descriptive point of view, it is not clear how to build a decision theory around
it. The difficulty is that such a theory requires one to discover and formalize the
decision procedures that individuals are presumably using. Nevertheless, there are
several avenues to pursue in this regard, and as a matter of fact, some promising
attempts of doing this are already present in the literature (cf. Rubinstein, 1988,
1998; Gilboa and Schmeidler, 1995). These studies, however, do not really aim
to provide a general method of attack toward a theory of procedural decision
making. By contrast, our aim in this article is precisely to develop such a method
in the classical von Neumann–Morgenstern framework. Our approach is in part
axiomatic, and takes as a basis the tendency of decision makers to use some
rules/procedures in going from simple decisions to complex ones.

We propose to think of the decision maker as having a core preference relation
over certain alternatives that consist of the primitive judgements of the individual.
This core preference relation is presumably highly incomplete, for it corresponds
to the rankings of the lotteries that are, in a sense, trivial for the individual (like the
rankings of degenerate lotteries with monetary outcomes). The next ingredient
of the model is a procedure that lets the agent deduce additional rankings. In the
present article, we use a particular procedure for this, one that is based directly
on the standard independence axiom. That is, we posit that an agent who initially
ranks a lottery p higher than q deduces the superiority of a given mixing of p with
another lottery over the same mixing of q. (In fact, this is how the independence
axiom is usually motivated.) In this way, one extends the core judgements of the
agent to a larger set, and then uses this extended set to obtain new rankings via
applying the same procedure, and so on. The final outcome of this process is, then,
viewed as the preference relation of the agent.3

It is critical that the “procedure” that we use in this model is based directly
on the independence axiom. Of course, we do not have to confine attention to
such a procedure in the sense that the model we suggest here remains meaningful
with all sorts of other procedures. Having said this, however, we believe that
using a procedure that is based on the independence axiom is a natural place to
start. At the very least, this allows us to readily compare the conclusions of the
present model with those of the standard one, and thus helps us better understand
the contribution of the procedural rationality approach. What is more, as we shall
show, such a procedure leads us to quite pleasing results that are readily applicable
in economic models.

axiom was acknowledged by von Neumann and Morgenstern (1944, p. 630) who said about it that “it is
very dubious, whether the idealization of reality which treats this postulate as a valid one, is appropriate
or even convenient.”

3 Although his main objective was somewhat different than ours, this particular formulation of
procedural decision making was actually elaborated upon by Aumann (1962). It is, thus, quite surprising
that the idea has not been pursued in the literature so far.
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The present model is explained, both formally and informally, in Section 2. It
will suffice here to say that the preference relations that are generated by the
procedure just described are typically (but not necessarily) incomplete, but they
still allow for a useful expected utility representation. In the course of the following
analysis, we shall show that such a preference relation, call it �, has the following
structure:

p � q if and only if Ep(u) ≥ Eq(u) for all u ∈ U

where U is a set of cardinal utility functions, and Er (u) denotes the expected
value of u with respect to the lottery r = p, q. Thus, such procedurally generated
preference relations enjoy a vector-valued expected utility representation.

By varying the set of initial rankings of the individual (her core preference rela-
tion), we shall obtain in Sections 3 and 5 a number of such representation results;
these results, along with a uniqueness theorem presented in Section 4, constitute
the main theoretical contribution of the present work. They may be thought of
as interesting for a variety of reasons. First, they introduce a conceptualization of
procedural rationality that leads to a parsimonious departure from the expected
utility paradigm. Second, they build a bridge between procedural rationality and
multiobjective planning, which was informally suggested by Simon (1955). In this
sense, our representation results are quite operational. Third, as explained in Sec-
tion 5, these results link the present approach to the theory of stochastic orders.
The first- and second-order stochastic dominance orderings are procedurally gen-
erated in our sense, and what is more, it is also easy to identify the core preference
relations that generate these orderings. This allows us to obtain new characteriza-
tions of these celebrated preorders, and to give an immediate applicability to the
procedural rationality theory that we propose here. To illustrate, two elementary
applications are provided in Section 6, which is followed by sections outlining our
final comments on future research and the proofs of the main results.

2. A MODEL OF PROCEDURAL DECISION MAKING

2.1. Procedural Rationality: An Informal Discussion. In a series of articles,
Herbert Simon has stressed the distinction between what he referred to as sub-
stantial rationality and procedural rationality. “Behavior is substantively rational
when it is appropriate to the achievement of given goals within the limits imposed
by given conditions and constraints. . . . Behavior is procedurally rational when it
is the outcome of appropriate deliberation” (Simon, 1976, pp. 425–26). It would
be fair to say that standard economic analysis is based almost exclusively on the
postulate of substantial rationality. However, mounting experimental evidence
and growing literature on cognitive psychology have recently led some economic
theorists to take the procedural aspects of decision making more seriously.4

Unfortunately, it is not at all obvious how to formalize procedural rational-
ity in an operational way. The existing literature focuses mostly on a particular
dimension of this concept, namely, the tendency of decision makers to simplify

4 See Chapters 1 and 2 of Rubinstein (1998) for an introduction to these matters.
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matters by basing their decisions on some sort of a similarity relation. It is argued
that people often evaluate two distinct alternatives ignoring the attributes of these
alternatives that are “similar” to each other, or that they make use of past deci-
sions that were made in “similar” circumstances. A formalization of the first idea
was provided by Rubinstein (1988), whereas the latter gave rise to the so-called
case-based decision theory that was first introduced by Gilboa and Schmeidler
(1995).

Another major dimension of procedural rationality is, on the other hand, the
tendency of the decision makers to use some rules in going from simple decisions
to complex ones. In many decision-theoretic scenarios, it is possible to identify
unambiguous problems that an overwhelming majority will find easy to solve.
Offer a person a new insurance policy that is superior to the one she already has
in every conceivable dimension, she will take it; ask a person to choose between
two degenerate lotteries, one giving $1 and the other $100, she will know what to
choose. Obviously, it is possible to give numerous trivial examples to this effect.
But few of the interesting decision problems in life are of this trivial nature. When
faced with a more complex problem, what does a decision maker do? An intuitive
(and indeed procedural) argument would be that she tries to somehow “break
down” the problem into smaller, easier problems that she knows how to solve.
If she can really do this (that is, the problem can indeed be decomposed into
“easy subproblems”), then she can comfortably make her decision. So, one way of
thinking about a “procedurally rational” individual is to view her as knowing how
to rank certain alternatives with ease, and then using a certain procedure to obtain
solutions to new choice problems that she faces by using her primitive ranking.
This view seems integral to some of the discussions of procedural rationality in the
literature on behavioral decision making and cognitive psychology, but it is, to the
best of our knowledge, not investigated formally yet. Our aim in this article is,
then, to sketch a theory of decision making that corresponds to this point of view,
and that retains some of the basic features of the classical expected utility theory.

Before moving on to the formal development, however, let us note that although
procedural decision making is naturally motivated from a descriptive perspective,
it is also useful for normative applications. For, instead of devising a complete
plan of action for every possible contingency, it is often easier to come up with
appealing rules that would help one go from simple decisions to complex ones.
Thus, examining the implications of such procedures is of normative interest, and
much of what follows has clear normative implications. In this sense, a procedural
decision making model is not different from the expected utility model; either
approach has its own pros and cons with respect to both normative and descriptive
points of view.

2.2. Preliminary Notation and Definitions. Throughout this article, Z will
stand for the nonempty set of prizes (outcomes). Although we shall impose fur-
ther structure on it later on, for the general theory, we assume only that Z is a
compact metric space. The set of all continuous real functions on Z endowed with
the sup norm is denoted by C(Z). Strictly speaking, by a utility function in this
article we mean any map u : Z → R. However, all utility functions that we shall
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consider here will be continuous, and thus one can identify C(Z) with the space
of all utility functions.

We denote the set of all Borel probability measures on Z by P(Z) and, as
usual, view it as the space of all lotteries. (When we need to impose a topology on
this space, we shall always use the topology of weak convergence.) The generic
members of P(Z) are denoted p, q, r , etc. The expected value of a probability
measure p is denoted E(p). The support of p, denoted S(p), is defined as the
smallest closed set of full measure in Z. A probability measure is said to be simple
if it has finite support, and degenerate if it has singleton support. We denote the
set of all simple probability measures on Z by Ps(Z), and the degenerate lottery
that puts the entire mass on the outcome z by δz.

By a preference relation � in this article we mean a reflexive and transitive
binary relation (i.e., a preorder) on P(Z). The strict part of � is denoted by � and
the indifference part by ∼. Although the interpretation of � is identical to that
in the expected utility theory, we do not assume here that a preference relation is
necessarily complete. Upper and lower semicontinuity properties of � are defined
as usual.

2.3. Procedural Rationality: A Formal Discussion. We are interested in this
article in those preference relations on P(Z) that are “derived” from a set of
primitive comparisons of lotteries by means of a certain procedure. The beginning
point of our procedural decision-making theory is, then, a preorder Ron P(Z) that
consists of the “primitive” judgements of the individual. Of course, R may consist
of both indifference and strict preference rankings. Consequently, we decompose
R into two parts as follows:

IR := {(p, q) ∈ R : (q, p) ∈ R} and PR := R\IR

If R is a complete ranking of lotteries, then the individual is inherently capable
of ranking any two lotteries without using any simplifying procedure, and hence
we do not need to go any further. The theory becomes more interesting, however,
if R is incomplete; recall that we view the statement (p, q) ∈ R as meaning that
the individual has no doubt in her mind that p is at least as good as q. In this case,
we may capture the idea that the actual preference relation � is derived from
R via some process by viewing it as a proper extension of R, that is, as a preorder
on P(Z) such that R ⊆ � and

(p, q) ∈ PR implies p � q(1)

for all p, q ∈ P(Z). (We shall refer to the requirement (1) as “properness” in what
follows.5) This suggests further that we may be able to model the process with
which � is derived from R by requiring that � satisfies certain properties.

5 The properness requirement assures that if the agent ranks a lottery strictly better than another,
then the procedure she uses will never lead her to view these alternatives indifferently. Given the
interpretation of R, this is an unexceptionable requirement.
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To be precise, suppose that R = {(p, q)}, which means that the only sure-fire
judgement of the individual is the unambiguous superiority of p over q. Now
suppose that this individual actually “thinks” in accordance with the standard
independence axiom. Then, so the argument goes, she could use the independence
property as a “procedure” to infer further rankings of lotteries from her only
primitive ranking. Thus, for any r ∈ P(Z) and α ∈ (0, 1), such an individual could
“break down” the problem of choosing between αp + (1 − α)r and αq + (1 − α)r
to the problem of ranking p and q that she knows how to deal with. (Note that
all we do here is to use the usual motivation for the independence axiom in an
explicit way.) The totality of such inferences then defines the agent’s preference
relation that is derived from her primitive judgement(s) by using the procedure of
(successively) applying the independence axiom. In this particularly simple case
in which |R| = 1, the resulting preference relation is simply {(αp + (1 − α)r, αq +
(1 − α)r) : r ∈ P(Z) and α ∈ [0, 1]}.

This particular way of thinking about procedural rationality makes it rather
easy to formalize the approach in a workable format. To do this in the case of
the particular procedure outlined above, let us state formally the independence
axiom.

DEFINITION. Let � be any preorder defined on P(Z). We say that � satisfies the
independence axiom if

p � q iff αp + (1 − α)r � αq + (1 − α)r

holds for all p, q, r ∈ P(Z) and α ∈ (0, 1).

The discussion outlined above, then, corresponds formally to saying this: The
preference relation of the individual whose initial judgements are contained in the
preorder R, and who uses the above described procedure is simply the smallest
proper extension of R that satisfies the independence axiom, which we denote by
�R.6 So we may think of the preference relation � of an individual as generated
from R by a procedure based on the independence property whenever � = �R.

In summary, the procedural decision-making model that we propose here is
made up of two components. The first is a (presumably highly incomplete) pre-
order R that consists of the primitive rankings of the individual. The second is a
rationality property the successive application of which is viewed as the procedure
the decision maker uses to obtain new rankings from those contained in R. Clearly,
the nature of the induced preference relation depends on both R and the chosen
rationality property. Our aim in this article is to demonstrate the promise of this
model by examining those preferences that are derived from various choices of R
by taking as the rationality property the standard independence axiom. Formally
put, then, our objective is to identify the structure of �R for various choices of R.

Before proceeding, however, several caveats about the present approach are
in order. First of all, as noted in Section 1, although we regard the procedures
based on the independence axiom as naturally motivated, given the key role this

6 That is, �R is the intersection of all proper extensions of R, provided that �R is well defined.
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property plays in decision theory at large, it is by no means clear that this is the
optimal way of making use of the procedural model. In fact, we view procedural
rationality as a systematic path toward a satisfactory theory of bounded rationality,
and thus recognize that the independence axiom is likely to prove limiting for the
workings of the theory. This axiom is consistently refuted in the experiments, and
many weaker alternatives of it are thus suggested in the literature.7 However, it
is still the key axiom of risk theory, and provides one with a good and tractable
starting point. Moreover, by limiting ourselves to a procedure that is based on the
independence axiom, we achieve a parsimonious departure from the expected
utility paradigm. This, in turn, makes comparing the conclusions of the present
model to those of the standard one an easy task.

Secondly, it should be clear that there is no guarantee that the present approach
will yield a complete preference relation for a procedurally rational agent, thereby
requiring us to work with incomplete orderings. Such preference relations are mo-
tivated and discussed extensively in the literature, and thus we will not elaborate
on the issue of incompleteness here.8 Moreover, we are mainly interested here in
obtaining representation theorems for procedurally derived preference relations
in a sense that will become clear shortly. In particular, we shall not discuss here
matters related to actual choices of the individuals, which would eventually re-
quire us to append to the present model certain conventions regarding the decision
making (such as status quo bias, case-based decision making, expert consulting,
etc.). Although extremely interesting, these issues lie outside our present scope,
and will be taken up in future work.9

The third caveat is more specific to the subsequent development, and concerns
the existence of �R. To see the basic nature of the difficulty, let Z := {a, b} and
R := {(δa, δb), (δb, δa), (p, q)} where p and q are any two nondegenerate lotteries
on Z. In other words, the individual’s primitive judgement is such that she is
indifferent to the degenerate lotteries δa and δb (so (δa, δb) ∈ IR), whereas she
strictly prefers p to q (so (p, q) ∈ PR). It is easy to see here (by repeated application
of the independence axiom) that any extension of Rthat satisfies the independence
axiom must render all alternatives indifferent. Consequently, no such extension is
proper, and thus �R does not exist.

7 Two well-known surveys that discuss these matters at length are Machina (1987) and Camerer
and Weber (1992).

8 See, in particular, Richter (1966), Peleg (1970), Mandler (1999), and Ok (2002) on the theory of
incomplete preferences in the context of certainty. More related to the present work are, however,
the important papers by Aumann (1962) and Bewley (1986), who discuss incomplete preferences in
the context of choice under uncertainty. In particular, Aumann (1962) points to the link between
the notions of incomplete preferences and procedural decision making in a way that parallels our
approach.

9 We should, however, mention that there is certainly an interesting connection between the present
approach based on incomplete preference relations and that of satisficing behavior that is powerfully
advocated by Simon. As Sen (1990, p. 203) puts it, “ . . . it can be argued that satisficing behavior really is
maximization according to an effectively incomplete relation, such that the states satisfying the target
level of achievement are all put in a non-comparable class as far as choice behavior is concerned.
Maximization can indeed be defined in terms of such incomplete relations, . . . and if it is seen in these
terms, the gap between satisficing and maximizing may be, at least formally, reduced.” This issue is
further explored in Sen (1997).
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This simple example shows us that one has to be careful when choosing the
primitive relation R. Fortunately, however, it is relatively easy to determine a
simple set of necessary and sufficient conditions on R that would guarantee
the existence of �R (see Lemma 2). Roughly speaking, it is necessary and suf-
ficient for R not to violate the independence axiom. The potential nonexistence of
�R will thus not cause serious difficulties in the subsequent analysis.

3. REPRESENTATION OF FINITELY GENERATED PREFERENCES

Choosing a particular primitive ordering R obviously requires us to specify the
decision-theoretic environment in more detail. At the level of generality that the
von Neumann–Morgenstern theory is developed, there are not many interesting
options to choose from. An extremely conservative approach might determine
R as {(p, p)}p∈P(Z), which means that the agent is initially fully indecisive, being
unable to rank any two distinct lotteries. In this case, we obviously cannot reach
interesting conclusions since R = �R. At the other end of the spectrum, one may
postulate that R satisfies the von Neumann–Morgenstern axioms, in which case
R = �R holds again. The interesting scenario is clearly the one in which the agent
has only a few rankings in mind, and the rest of her decisions are obtained by
means of the procedure she uses. At this level of generality, the natural way of
modeling “a few rankings” is by supposing that R is finite, and this is precisely
what we shall do in this section.10

DEFINITION. A preorder � on P(Z) is said to be generated by a finite procedure
if there exists a finite set R such that � = �R.

Given the discussion of the previous section, the interpretation of a preference
relation that is generated by a finite procedure should be straightforward. We
should perhaps add that the finiteness of R also helps one deduce the agent’s
primitive rankings by choice experiments, and then construct her entire preference
relation by using successive applications of the independence axiom. This is, of
course, nothing but a standard revealed preference argument that is particularly
tractable here, thanks to the finiteness of R.11,12

10 One should really view the finiteness of R here in excess of the trivial rankings {(p, p)}p∈P(Z)
that the individual surely possesses. These rankings will emerge in �R precisely because we assume
this relation to be reflexive, and hence not including them in R is without loss of generality.

11 Suppose that an experimenter would like to pin down the preference relation of an agent to deal
with a particular problem, and for this reason, she conducts several experiments. The result will be
finitely many rankings by the agent; call the totality of these R. With a little luck, R does not violate the
independence axiom, and thus the experimenter may feel somewhat comfortable that the preference
relation of the agent is of the von Neuman–Morgenstern type. But what is it exactly? It is impossible to
answer this question in general with these givens, but this much we can say: The agent’s preference
relation is a proper extension of �R. Thus, it is of interest to study the structure of �R; it may even be
the case that �R is all the experimenter needs to solve her original problem.

12 One may take issue with the term “finite procedure” that we use here, since it seems at first like
the finiteness applies only to the cardinality of R. But this is really not the case; it is easy to verify that,
if p�R q, then one can deduce this by applying the independence axiom at most |R| times.
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As noted in Section 2.1, finitely generated preferences are also of interest from
a normative point of view. From this angle, the independence axiom commands
extensive support, and hence, loosely speaking, a preference relation that is gener-
ated by a finite procedure approximates the optimal decision making of a planner
who is given a finite list of instructions.

Given these motivations, we shall inquire into the formal nature of finitely
generated preference relations in the rest of this section.

3.1. A General Representation Theorem. Our main theorem concerns the rep-
resentation of preference relations that are generated by a finite procedure.

THEOREM 1. If � is a preference relation on P(Z) that is generated by a finite
procedure, then there exists a convex set U of continuous utility functions on Z
such that

p � q if and only if
∫

Z
u dp ≥

∫
Z

u dq for all u ∈ U(2)

for each p, q ∈ P(Z).

Theorem 1 makes transparent the direction in which we depart from the classi-
cal paradigm. The extensive usage of the independence axiom (but not continuity)
lets us obtain a theory very similar to the expected utility theory, albeit with one
exception. In the present procedural setup, we find a number of utility functions as
opposed to a single von Neumann–Morgenstern utility function. That is, a finitely
generated preference relation ranks p above q iff the expected utility of p is higher
than that of q with respect to a given set of utility functions. Put this way, such pref-
erence relations are reminiscent of stochastic orders (see Section 4). Moreover,
they portray a dual nature relative to the recent decision-making approaches that
are based upon nonunique priors (see Gilboa and Schmeidler, 1989; and especially
Bewley, 1986). Although these approaches arrive axiomatically at a set of proba-
bility measures, and thus obtain several linear preference functionals (one for each
subjective probability measure), our procedural approach yields a set of utilities
and thus several linear preference functionals (one for each utility function).13

There is then a sense in which Theorem 1 is a vector-valued analogue of the
classical expected utility theorem. (See also Theorem 2 below.) This is interesting
in its own right, for it ties the procedural rationality model to the theory of mul-
ticriteria decision making that studies the problem of simultaneous maximization
of several objective functions. After all, by Theorem 1, we may view a procedu-
rally rational individual (to the extent that procedural rationality is captured by
finitely generated preference relations) as a person who sees several dimensions

13 It is certainly an interesting question if one can also obtain such a multiutility representation
result in an axiomatic way (for instance, by replacing the phrase “is generated by a finite procedure”
with “satisfies the independence and continuity axiom.” In the case of compact Z, this question was
settled recently in the affirmative by Dubra et al. (2001). The basic problem is still open, however, in
the case where Z is an arbitrary Polish space.
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in a choice problem, and prefers an alternative over another when, and only when,
this alternative performs better in all of these dimensions.

Before we move on to investigate some variants of Theorem 1, we should note
that this result is indeed anticipated by the seminal Aumann (1962).14 However,
Aumann’s main objective in his related analysis was to understand under what
conditions a given incomplete preference relation can be extended to a complete
relation that admits an expected utility representation. Unfortunately, as Aumann
himself has noted, this approach fails to provide positive results when the prize
space is not finite. Although our approach is not axiomatic, Theorem 1 shows
that the present procedural decision-making model yields an expected multiutility
representation of an incomplete preference relation for very general prize spaces.

REMARK 1. When Z is infinite, there is a crucial difference between properly ex-
tending an incomplete preference relation and representing it by means of a set of
utilities. To drive this point home, set Z := [0, 1], and let us agree to say that a pref-
erence relation � on P(Z) admits an Aumann utility if there exists a function u ∈
RZ such that p � (∼ resp.) q implies

∫
Z u dp > (= resp.)

∫
Z u dq. This relation has

a multiutility representation if there exists a set U in RZ such that p � q iff∫
Z u dp ≥ ∫

Z u dq for all u ∈ U . It turns out that � may not admit an Aumann
utility even if it has a multiutility representation.

Define � on P(Z) by

p � q if and only if
∫

Z
1{z} dp ≥

∫
Z

1{z} dq for all 0 ≤ z ≤ 1

(that is, p � q iff p(z) ≥ q(z) for every atom of q). By definition, � has a (Riemann
integrable) multiutility representation. Yet � does not have an Aumann utility.
To see this, let u ∈ RZ be an Aumann utility for � that must be Borel measurable
by definition. Now let � denote the Lebesgue measure on [0, 1]. Since δ1 � �, the
integral

∫
Z u d� must exist and satisfy ∞ > u(1) >

∫
Z u d�. It is also impossible

that
∫

Z u d� = −∞, because this would contradict the fact that 2
3δz + 1

3� � 1
3δz +

2
3�. Therefore, u must be Lebesgue integrable, so α := ∫

Z u d� is a real number.
Moreover, for any z ∈ Z, we have δz � 1

2δz + 1
2�, and this implies that u(z) > α for

all z ∈ Z. But of course,
∫

Z(u − α) d� = 0, which, given that u − α is a nonnegative
random variable, may hold iff u(z) = α almost everywhere on Z, a contradiction.

3.2. Finite Prize Spaces. We have too little structure at present to be able
to deal with the converse of Theorem 1. That is, Theorem 1 does not say if a
preference relation defined by (2) is generated by a finite procedure or not. But
in the case where Z is finite, this actually turns out to be true. What is more, in this

14 Under the assumption of finiteness of Z, Aumann (1962, p. 448) states that “ . . . under fairly wide
circumstances (but not always) we can say the following: Given the set of all utility functions, we can
find the preference order. For example, this is true if we know a priori that the preference order is
‘finitely generated’ i.e., consists of a finite number of ‘basic’ preference statements that follow from
these ‘basic’ ones by application of the axioms.”
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case we can also make sure that one uses only finitely many utilities in representing
a finitely generated preference relation.

THEOREM 2. Let Z be a finite set. A preference relation � on P(Z) is generated
by a finite procedure if, and only if, there exists a positive integer n and a mapping
u : Z → Rn such that

p � q if and only if
∑
z∈Z

p(z)u(z) ≥
∑
z∈Z

q(z)u(z) for all p, q ∈ P(Z)(3)

In the case of finite prize spaces, then, we are able to fully characterize the
preference relations that are generated by a finite procedure in a way analogous
to the expected utility theorem. In fact, it is easy to see that n = 1 can be chosen in
Theorem 2, if � is known to be complete, which should clarify the link between
this result and the classical expected utility theorem. (Due to the straightforward
summability problems, the same cannot be said in the general case.)

Being closely related to the problem of obtaining an expected multiutility rep-
resentation for an incomplete preference relation, the “only if” part of Theorem 2
relates closely to Theorem D of Aumann (1962). However, it should be noted that
Theorem 2 delivers more than Aumann’s related result, because it guarantees the
existence of finitely many utility functions that allow one to recover the original
preference relation �. Moreover, perhaps the more novel part of Theorem 2 is its
“if” part. In particular, this observation helps one find interesting preorders that
are generated by a finite procedure.

EXAMPLE 1. Let Z = {1, . . . , d}, d ∈ N and let ≥FSD stand for the first-order
stochastic dominance ordering on P(Z), that is,

p ≥FSD q iff
�∑

z=1

p(z) ≤
�∑

z=1

q(z) � = 1, . . . , d − 1

(Here we interpret d as the best prize, d − 1 as the second best prize, and so on.)
We claim that ≥FSD is generated by a finite procedure. To see this, define, for each
j = 1, . . . , d − 1,

u j (z) := −1 for each z ≤ j and u j (z) := 0 for each z > j

so that
∑

z∈Z u j (z)p(z) = − ∑ j
z=1 p(z) for any p ∈ P(Z). Therefore,

p ≥FSD q iff
∑
z∈Z

p(z)u(z) ≥
∑
z∈Z

q(z)u(z) for all p, q ∈ P(Z)

where u = (u1, . . . , ud−1). By Theorem 2, ≥FSD must be generated by a finite pro-
cedure. A constructive proof of this claim is provided by verifying that ≥FSD =
� R with R = {(δd, δd−1), . . . , (δ2, δ1)}.
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We observe here that a first-order stochastic dominance maximizer can be
thought of as a procedurally rational agent in a well-defined sense. This, in turn,
shows again that the present theory is closely connected with the expected utility
theory (which is, of course, due to the central role played by the independence ax-
iom). We shall return to the connection between our approach and the stochastic
dominance theory in Section 4.

In passing, we note that there is no upper bound on the number of utility
functions needed to represent a finitely generated preference relation, when the
prize space has at least four elements. We demonstrate this next by means of an
example.

EXAMPLE 2. Let v be a regular polygon with n faces in R2, and let C ⊂ R3

be the cone generated by the polygon {(x1, x2, 1) : x ∈ v}. To each face i of the
cone C we may associate a vector ui ∈ R3 that is orthogonal to that face, and such
that x ∈ C iff ui x ≥ 0 for each i . Let Abe the 4 × 4 orthogonal matrix that maps
P(Z) − (1, 0, 0, 0) to the plane R3 × {0} in R4. Let Z = {1, 2, 3, 4} and define the
preference relation on P(Z) by

p � q iff A(p − q) ∈ C.

The utility functions that represent � are the vectors u′
i such that Au′

i = (ui , 0)
for i = 1, . . . , n. Thus, as was claimed, for any n, one can find a preference relation
� such that n utility functions are needed to represent � .15

3.3. Additive Representation in the Case of Horse Race Lotteries. Although
our main focus in this article is on the theory of risk (as opposed to uncertainty), it
is nevertheless interesting that the above representation theorems extend readily
to an additive representation result in the widely studied setup of Anscombe and
Aumann (1963). In this subsection we briefly present this representation that also
paves the way toward extending the present decision-making model to scenarios
in which the primitives are the (Savagean) acts as opposed to objective probability
distributions.

Let S be any finite set that is designated as the state space. An act is thus any
map from S to Z, and a horse race lottery is any map from S to the set of simple
probability measures Ps(Z). The objects of choice in the Anscombe–Aumann
formulation are the members of H(Z) := Ps(Z)S (which we identify with Ps(Z)|S|).
The generic horse race lotteries are denoted as h, g, etc. Clearly, a preference
relation � in this model is a preorder defined on H(Z).

It is readily observed that the definitions of the independence axiom and the
generation by a finite procedure extend in the natural way to the Anscombe–
Aumann framework. The extension of Theorem 1 to this framework is given next.

15 This example can also be used to show that a more complete preference relation may have to be
represented by a larger set of utility functions. In general, there is no connection between the amount
of completeness a relation may have and the number of utilities that are needed to represent this
relation.
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THEOREM 3. If � is a preference relation on H(Z) that is generated by a finite
procedure, then there exists a set U ⊆ C(Z)|S| such that

(4)

h � g if and only if
∑
s∈S

∫
Z

us dh(s) ≥
∑
s∈S

∫
Z

us dg(s) for all (us)s∈S ∈ U

for each h, g ∈ H(Z).

Therefore, finitely generated preferences over horse race lotteries entail a set
of preference functionals over acts, and each member of this set is of the form
f �→ ∑

s∈S us( f (s)), where us is a state-dependent utility function. Of course, the
situation would be ideal if we could guarantee that each us can be written as
us = λsu for some (unique) λs ≥ 0 and u ∈ C(Z). This would entail a (subjective)
expected utility representation that is, in a sense, the “right” version of Theorem 1
for the theory of uncertainty. Just as in the case of Anscombe and Aumann (1963),
the independence axiom is, however, not powerful enough to yield this extension.
The problem is to strengthen the procedure we have been using so far by combining
the independence axiom with some other properties and see if one can get a vector-
valued state-independent utility representation for preferences that are generated
by such a procedure. This problem stands open for the moment.

4. A GENERAL UNIQUENESS THEOREM

Take any set U of continuous functions on Z. We say that this set represents
the preference relation � on P(Z) whenever (2) holds for each p, q ∈ P(Z).
Theorems 1 and 2 thus amount to saying that any preference relation that is
generated by a finite procedure can be represented by a set of utility functions U .
This way of looking at things clearly requires us to answer the question of what
other sets of continuous functions may represent � .

The problem at hand is, then, to identify the set of all transformations on U
that would leave the representation invariant. In the case of the classical expected
utility theory (that is, when U is a singleton), the answer is well known to consist
of the set of all positive affine transformations. We claim that this would remain to
be the answer in our multiutility context as well, provided that we suitably define
what it means to transform a set of utilities in a positively affine way. We develop
the idea below.

Obviously, the set {λu + θ : λ > 0, θ ∈ R and u ∈ U} represents � whenever U
represents it. Although this is the end of the story in the classical theory, this set
does not really correspond to the “set of all positive affine transformations of
U .” Indeed, such a set should intuitively include all functions that can be written
as nonnegative finite linear combinations of the members of U , that is, all func-
tions in cone(U).16 Thus, it may be argued that the set we are after is precisely

16 We define a (convex) cone in any vector space as any nonempty convex set that is closed under
nonnegative scalar multiplication. The conical hull of a set S, denoted cone(S), is then defined as the
smallest cone in this vector space that contains S. It is easy to see that cone(S) is the intersection of
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cone(U) + {θ1Z}θ∈R, where 1Z is the indicator function of A. Indeed, it is easy to
see that this set indeed represents � whenever U does so. What is more, we can
stop at this point ifU is finite. However, allowing for any subset of C(Z) as a set that
may represent a given preference relation, we are forced to enlarge this set to

〈U〉 := cl(cone(U) + {θ1Z}θ∈R)

Indeed, it is readily observed that if U represents �, so does 〈U〉.17 It turns out
that this is precisely the largest set of all utility functions that represents � .

DEFINITION. Let U and V be any nonempty subsets of C(Z). We say that V is
a positive affine transformation of U if V ⊆ 〈U〉 and U ⊆ 〈V〉.

Observe that {v} is a positive affine transformation of {u} iff v = λu + θ for
some λ > 0 and θ ∈ R. Therefore, the notion of positive affine transformation of
a set of utilities generalizes the standard notion that is defined for a single utility
function. What is more, this concept allows us to generalize the uniqueness part
of the celebrated expected utility theorem.

THEOREM 4. Let U ⊆ C(Z) represent a preference relation � on P(Z). Then a
set V in C(Z) represents � if, and only if, it is a positive affine transformation of U .

In particular, this result shows that U in Theorem 1 can be chosen to be closed
in C(Z).

5. UTILITY FOR MONEY

In this section, we specialize in the economically interesting case where Z is
composed of monetary outcomes. Consequently, we shall consider Z as a compact
subset of the reals. Without loss of generality, then, we set Z = [0, 1] in what
follows, and view P(Z) as the set of all lotteries with monetary prizes.

In this specialized setting, preference relations that are generated by a finite
procedure are of limited interest. This is because the rationality requirement of
positing that the decision maker is able to rank with precision the degenerate
lotteries is truly minimal. We shall, therefore, assume here that an agent always
strictly prefers δz to δz′ whenever z > z′. Of course, the decision maker might have
some other primitive rankings in mind, but she should certainly not have any
difficulty in ranking the degenerate lotteries in this way. This intuition, in turn,
leads us to call a set R in P(Z)2 monotonic if

all cones that contain S and hence, that it is composed of all vectors of the form
∑k

λi xi where k ∈ N,

and λi ≥ 0 and xi ∈ S, i = 1, . . . , k.
17 To see this, take any sequence (um) in cone (U) + {θ1Z}θ∈R and assume that ‖um − u‖∞ → 0.

Given any p, q ∈ P(Z), if
∫

Z um dp ≥ ∫
Z um dq for each m, then, since the convergence is uniform, we

find ∫
Z

u d(p − q) = lim
∫

Z
um d(p − q) ≥ 0

This simple observation proves the claim.
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{(δz, δz′) : z > z′} ⊆ PR

and suggests the following notion of procedural rationality:

DEFINITION. Let Z = [0, 1]. A preference relation � on P(Z) is said to be
generated by a monotonic procedure if there exists a monotonic set R such that
� = �R.

What do monotonically generated preferences look like? Intuitively, one may
suspect that they must have something to do with the first-order stochastic dom-
inance. Indeed, Example 1 provides some formal support to this effect. It turns
out that we can generalize this example substantially if we restrict our attention
to the continuous preference relation � on P(Z) that, by definition of continuity,
satisfies the following property: For any sequences pm and qm in P(Z), pm

w→ p,
qm

w→ q, and pm � qm imply p � q.18

The following proposition identifies the relation between monotonically gener-
ated continuous preferences and the first-order stochastic dominance.

PROPOSITION 1. Let Z = [0, 1]. The first-order stochastic dominance ordering
≥FSD on P(Z) is the smallest continuous preference relation that is generated by
a monotonic procedure. Moreover, a continuous preference relation on P(Z) is
generated by a monotonic procedure if, and only if, it is a proper extension of ≥FSD

that satisfies the independence axiom.

It is often argued that consistency with the first-order stochastic dominance is an
essential ingredient of rational behavior (cf. Karni and Schmeidler, 1991). Propo-
sition 1 provides an alternative support for this statement by implementing the
notion of procedural rationality that we propose in this article. Observe that this
result also contributes to the usual characterization of the first-order stochastic
dominance (which is sometimes referred to as the majorization theorem in math-
ematics). Indeed, this theorem entails that ≥FSD= cl(�R) where R = {(δz, δz′) :
z > z′}. Given the important role that the first-order stochastic dominance plays
in the theory of risk, this observation perhaps deserves explicit mention.

COROLLARY 1. ≥FSD is the smallest continuous preorder that satisfies the inde-
pendence axiom and properly extends the preorder {(δz, δz′) : z > z′}.

The next step is to introduce the notion of risk aversion to the present setting.
Given the procedural decision-making approach that we advance here, the natural
way of doing this is to posit that a risk-averse agent is one who ranks a given lottery
p below the lottery degenerate at E(p) as a primitive judgement. In fact, it suffices

18 We could dispense with the continuity assumption by confining attention to simple lotteries; the
proof of Proposition 1 demonstrates this formally. At any rate continuity is a mild requirement that is
rarely questioned.
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for our purposes to postulate that the agent has such an initial ranking in mind
only for simple lotteries. Thus, we refer to a set R in P(Z)2 as risk averse if

{(
δE(p), p

)
: p ∈ Ps(Z) and p is nondegenerate

} ⊆ PR

This suggests the following:

DEFINITION. Let Z = [0, 1]. A preference relation � on P(Z) is said to be
generated by a risk-averse procedure if there exists a risk-averse set R such that
� = �R.

Given the connection between the first-order stochastic dominance and mono-
tonically generated preferences, the following fact will not come as a surprise.

PROPOSITION 2. Let Z = [0, 1]. A continuous preference relation on P(Z) is gen-
erated by a risk-averse procedure if, and only if, it is a proper extension of the
second-order stochastic dominance ordering ≥SSD that satisfies the independence
axiom.

Of course, this proposition entails that an exact analogue of Corollary 1 holds
in the case of the second-order stochastic dominance. That is, ≥SSD is the smallest
continuous preorder that satisfies the independence axiom and properly extends the
preorder {(δE(p), p) : p ∈ Ps(Z)}.

Since it is standard to model economic agents as money loving and risk averse,
it is appealing to combine the monotonic and risk-averse procedures to obtain
what might be called the “standard procedure.” Formally,

DEFINITION. Let Z = [0, 1]. A preorder � on P(Z) is said to be generated by
a standard procedure if there exists a monotonic and risk-averse set R such that
� = �R.

It is conventional to model the preferences of an individual by means of a strictly
increasing and concave utility function in applications. The following theorem
shows that if the preferences of an agent are generated by a standard procedure,
then they can be modeled just as in the conventional theory, but this time using a
set of increasing and concave utility functions. To state this formally, let us agree to
refer to a familyU of real functions on Zas strictly increasing and concave whenever
(i) all u ∈ U is increasing and concave; (ii) for each a < b, we have u(a) < u(b) for
some u ∈ U ; and (iii) for each a �= b, we have λu(a) + (1 − λ)u(b) < u(λa + (1 −
λ)b) for some u ∈ U .

The following is the main result of this section.

THEOREM 5. Let Z = [0, 1]. A continuous preference relation � on P(Z) is
generated by a standard procedure if, and only if, there exists a strictly increasing
and concave set U of continuous utility functions on Z such that
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p � q if and only if
∫

Z
u dp ≥

∫
Z

u dq for all u ∈ U(5)

for each p, q ∈ P(Z).

This result puts us in a position of examining the implications of our formaliza-
tion of procedural rationality in some economic environments. We shall do this
next.

6. ELEMENTARY APPLICATIONS

Although Theorem 5 introduces quite a bit of structure to the analysis, it is not
really clear if nontrivial predictions can be obtained on the basis of preferences
that are generated, say, by a standard procedure (that may or may not accord with
the classical results). If all behavior can be “explained” by such preferences, then
the predictive power of the theory would clearly be nil. On the other hand, if we
could obtain no clear prediction by this theory, then the situation would again
be unsatisfactory. In this section, by using the standard risky choice problems of
portfolio selection and insurance demand, we shall demonstrate that the present
approach has reasonable scope for applications.

6.1. Preference for Diversification and Procedural Decision Making. We de-
fine an asset as a random variable on the measurable space ([0, 1],B, �) where B is
the Borel σ -algebra on Z := [0, 1], and � is the Lebesgue measure. The probability
measure that an asset a induces on [0, 1] is denoted by pa . Naturally, we derive an
individual’s preferences over assets from her preference relation � over lotteries,
and write a �∗ b iff pa � pb for any assets a and b. This definition allows us to talk
about preferences for assets that are generated by a certain procedure.

Following Dekel (1989), then, we say that �∗ exhibits preference for diversifi-
cation if for any collection of assets a1, . . . , am,

a1 ∼∗ · · · ∼∗ am implies
∑

αi ai �∗ a1

for all (αi ) ∈ �m−1 where �m−1 is the m-dimensional simplex. It is well known that
an expected utility maximizer (with an increasing von Neumann–Morgenstern
utility for money) is risk averse iff she exhibits preference for diversification. This
observation is generalized in various directions in the literature. For instance,
Dekel (1989) shows that the equivalence continues to hold if the preferences of the
individual are represented by any continuous and monotonic (in the sense of ≥FSD)
preference functional that is quasiconcave in probabilities. A natural question in
our setting then is if the same equivalence obtains in the case of preferences that
are generated by a standard procedure. It turns out that the answer is yes, and the
potential incompleteness of such preferences does not forbid such a result.

Our first claim is, then, that any continuous preference relation for assets �∗ that
is generated by a standard procedure exhibits preference for diversification. The
proof of this claim is essentially identical to that of the corresponding result in the
standard theory, but to illustrate that incompleteness never gets in the way, we
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quickly go through the argument. Begin by observing that, given such a preference
relation �∗, we can use Theorem 5 to find a strictly increasing and concave set U
of continuous utility functions on Z such that

a �∗ b iff
∫

Z
u dpa ≥

∫
Z

u dpb for all u ∈ U(6)

for any two assets a and b. Now assume that a1 ∼∗ · · · ∼∗ am for any given m ≥ 1,
pick any u ∈ U , and fix any (αi ) ∈ �m−1. We have

∫
Z

u dp�αi ai =
∫

Z
u
( ∑

αi ai (ω)
)

dω ≥
∑

αi

∫
Z

u(ai (ω)) dω =
∑

αi

∫
Z

u dpai

by Jensen’s inequality. But (6) guarantees that
∫

Z u dpai = ∫
Z u dpa1 for each i and

u ∈ U , so using the above expression and (6) again, we obtain
∑

αi ai �∗ a1 as is
sought.

Interestingly, a partial converse of this observation also holds: If �∗ is continu-
ous, monotonically generated, and exhibits a preference for diversification, then it
must be generated by a standard procedure. This fact is not of immediate interest
for our present purposes, and hence, we shall omit its proof. We should note, how-
ever, that a proof can be given by modifying the proof of Proposition 2 of Dekel
(1989) in a minor way.

In summary, we maintain that the classical result establishing the equivalence
of preference for diversification and risk aversion in the case of expected utility
maximization carries over to the present framework where the preferences are
allowed to be incomplete.

6.2. Actuarial Fairness and Procedural Decision Making. We examine next a
textbook example of an insurance model. Consider a decision maker with initial
wealth w > 0 and preferences that are generated by a standard procedure. As-
sume that the agent is facing a risky situation in which she can lose 1 dollar with
probability π ∈ (0, 1). The problem of the agent is then to decide how many units
ι ∈ [0, 1] of insurance to buy given that the cost and the payment (in case of loss) of
the unit insurance are c > 0 and 1, respectively. It is well known that if the individ-
ual is risk averse, and if insurance is actuarially fair (that is, c = π), then ι = 1, i.e.,
the agent insures fully. What is more, this result is proved for an arbitrary concave
utility function, and hence Theorem 5 implies readily that it is valid in the case of
a continuous preference relation that is generated by a standard procedure.

In fact, such an individual does not even have to use any procedure, she is
actually endowed with a primitive judgement that delivers the optimal choice
directly. For, the problem of the agent is to find the best lottery in the set {pι}ι∈[0,1]

where pι is the lottery that pays w − ιc − 1 + ι with probability π and w − ιc with
probability (1 − π). So E(pι) = w − ιc when c = π , whereas we have p1 = δw−ιc.
Thus, by definition of a risk-averse procedure, it must trivially be the case that p1

is the unique best choice for any individual with preferences that are generated
by a standard procedure.
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On the other hand, the classical theory maintains the converse conclusion as
well: An expected utility maximizer with strictly increasing and strictly concave
utility function underinsures if insurance is actuarially unfair (that is, c > π). In-
terestingly, this result does not hold for an arbitrary individual with preferences
that are generated by a standard procedure. Indeed, if � ⊆ P(Z)2 is given by
(5) with U being equal to the set of all continuous, strictly increasing, and strictly
concave utility functions, then p1 remains in the � -maximal subset of {pι}ι∈[0,1].19

One may object to this conclusion in that all members of {pι}ι∈[0,1] are � -
maximal when c > π . This is, however, not really a cause for concern. All that is to
be concluded from this observation is that � is “too incomplete” and that we need
to introduce further structure to U (by strengthening the employed procedure or
by other means). Or, alternatively, it may be argued that the choice procedure of
the agent should be complemented, say, by introducing a status quo bias to the
model. Informally speaking, this would entail that the agent would frequently (but
not always) depict a genuine reluctance to change her current insurance policy
(because she would do so only if an alternative dominates the status quo at all
dimensions, that is, for all u in U), not a completely uninteresting prediction.

7. FUTURE RESEARCH

In this article, we have proposed a procedural decision-making model, and
tried to argue that such models hold realistic promise for future developments of
the individual decision theory. We see ourselves not providing a complete theory
here, but rather formally suggesting an alternative way of looking at things. The
premise of the approach is based on beginning with a core preference relation
and then extending that relation by means of a procedure. Although our entire
development here assumes a particular procedure, one that uses the independence
axiom directly, this is only because we view this simple (but admittedly demanding)
procedure as a good starting point. Future thinking about the problem must worry
about weakening this procedure. Moreover, extending the present development
to the subjective probability framework is left for future research. Finally, the
potential incompleteness of procedurally generated preference relations leaves
room for introducing status quo bias and other empirically observed behavior
traits to decision models. Doing this formally awaits further research as well.

8. PROOFS

The proofs of all of our representation results are based on the following charac-
terization of �R. The basic geometric technique of proof is inspired by the seminal
work of Aumann (1962). (See Remark 2 below.)

19 The original result is recovered only if there is a uniform bound on the extent of concavity of the
functions that belong to U (as will be the case if U is a closed subset of continuous, strictly increasing
and strictly concave real functions on [0, 1]). Actually, this problem is not very different than what is
implicitly faced in the traditional approach. It is well known that the more risk averse a given agent
(in the sense of Arrow–Pratt), the closer to 1 is the optimal ι.
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LEMMA 1. Let R be any subset of P(Z)2 such that �R exists. Then, for any
p, q ∈ P(Z), we have p �R q if and only if there exists a positive integer k such that

p − q =
k∑

i=1

λi (pi − qi ) for some λi ≥ 0 and (pi , qi ) ∈ R, i = 1, . . . , k

PROOF. Take any p, q ∈ P(Z) with p − q = ∑k
λi (pi − qi ) for some k ∈ N,

λi ≥ 0, and (pi , qi ) ∈ R for each i = 1, . . . , k. Define

α j := λ j

1 + ∑
λi

, j = 1, . . . , k and αk+1 := 1
1 + ∑

λi
(7)

and note that (α1, . . . , αk+1) ∈ �k. Thus, since the preorder �R satisfies the inde-
pendence axiom, and pi �R qi for each i , we have

αk+1 p +
k∑

i=1

αi qi = αk+1q +
k∑

i=1

αi pi �R αk+1q +
k∑

i=1

αi qi

By using the independence axiom again, we find then that p�Rq.
Now let � stand for the set of all (p, q) ∈ P(Z)2 such that p − q = ∑k

λi (pi −
qi ) holds for some k ∈ N, λi ≥ 0, and (pi , qi ) ∈ R, i = 1, . . . , k. By the above argu-
ment, we have � ⊆ �R. To complete the proof, then, it is enough to show that �
is a proper extension of R that satisfies the independence axiom. Whereas reflex-
ivity of � and that R ⊆ � are obvious facts, the transitivity and independence of
� follow from routine arguments. To establish the properness of � , we need to
show that (p, q) ∈ PR implies the impossibility of q � p. To see this, let q � p so that
q − p = ∑k

λi (pi − qi ) where k ∈ N, λi ≥ 0, and (pi , qi ) ∈ Rfor each i = 1, . . . , k.

Using (7), then, we find αk+1 p + ∑k
αi pi = αk+1q + ∑k

αi qi . But if (p, q) ∈ PR,
this is impossible, for we must have p �R q by properness, and hence from the
independence axiom it follows that αk+1 p + ∑k

αi pi �R αk+1q + ∑k
αi qi , which

then contradicts the reflexivity of �R. �

Among many implications of Lemma 1 is a necessary and sufficient condition
(on R) for �R to exist. Although we do not need this characterization in the proof
of Theorem 1, we state it now for future reference.

LEMMA 2. Let R be any nonempty subset of P(Z)2. The preorder �R exists if
and only if

{q − p : (p, q) ∈ PR} ∩ cone{p − q : (p, q) ∈ R} = ∅(8)

So, if PR = ∅ or 0 /∈ co{p − q : (p, q) ∈ R}, then �R exists.
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PROOF. Suppose that �R is well defined but (8) fails to hold. Then there ex-
ists (p, q) ∈ PR such that q − p = ∑k

λi (pi − qi ) for some k ∈ N, (λi ) ∈ Rk
+, and

((pi , qi )) ∈ Rk. Thus, by Lemma 1, q�R p, whereas p �R q must hold due to the
properness of �R, a contradiction. Conversely, assume that (8) holds. We claim
that the preorder � defined in the proof of Lemma 1 is actually a proper exten-
sion of R that satisfies the independence axiom and (1). Given what is shown in
the second part of that proof, we only need to establish here the properness of
� . To this end, observe that, for any (p′, q′) ∈ PR, q′ � p′ would entail (q′, p′) ∈
cone{p − q : (p, q) ∈ R}, and this would contradict (8). �

To complete our preparation for the proof of Theorem 1, we need to borrow
the following result from geometric functional analysis.

LEMMA 3. The conical hull of any finite set in a Hausdorff topological vector
space is closed.

PROOF. See Aliprantis and Border (1999, p. 197, Corollary 5.68).

We are now ready to give the proof of Theorem 1.

PROOF OF THEOREM 1. Define the linear space

V(Z) := span(P(Z))

and make this space a locally convex Hausdorff topological vector space by using
the topology of weak convergence. This entails that any net (µα) in V(Z) converges
to µ, denoted µα

w→ µ, if and only if

∫
Z

f dµα →
∫

Z
f dµ for all f ∈ C(Z)

It is important to note that P(Z) is a compact and metrizable topological subspace
of V(Z).

We write R = {(p1, q1), . . . , (pk, qk)} and define the set

A :=
{

µ ∈ V(Z) : µ =
k∑

i=1

λi (pi − qi ) for some λ1, . . . , λk ≥ 0

}

that is,A = cone{pi − qi : i = 1, . . . , k}.A is easily checked to be convex. By using
Lemma 3, therefore, we can conclude that A is a closed convex cone in V(Z). So,
by the geometric form of the Hahn–Banach theorem, A must be the intersection
of all the closed half spaces, corresponding to hyperplanes through the origin, that
contain A. Of course, this means that there exists a set � ⊆ V(Z)∗ of continuous
linear functionals (the members of which correspond to the said set of closed half
spaces) such that µ ∈ A if and only if T(µ) ≥ 0 for each T ∈ �.
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Now fix any T ∈ �, and define uT : Z → R with uT(z) := T(δz). Since T is con-
tinuous on V, it is obviously continuous on {δz : z ∈ Z}, which means that uT is
continuous on Z. We next claim that

T(p) =
∫

Z
uT dp for all p ∈ Ps(Z)(9)

Observe that this claim holds trivially for any p with a singleton support, and to
continue with induction, assume that it is true for all p ∈ Ps(X) with |S(p)| = m − 1
where m> 2. Now take any q ∈ Ps(X) with |S(q)| = m, and define

r :=
∑

z∈S(q)\{z0}

(
q(z)

1 − q(z0)

)
δz

Clearly, q = q(z0)δz0 + (1 − q(z0))r so that, by linearity of T and the induction
hypothesis,

T(q) = q(z0)T(δz0 ) + (1 − q(z0))T(r) = q(z0)T(δz0 ) +
∑

z∈S(r)

(1 − q(z0))r(z)T(δz)

=
∑

z∈S(q)

uT(z)q(z)

which proves (9).
Now take any p ∈ P(Z) and recall that Ps(Z) is dense in P(Z) with respect

to the topology of weak convergence. Therefore, given that P(Z) is metrizable
in this topology, we can find a sequence (pm) in Ps(Z) with pm

w→ p. Since T is
continuous on P(Z), we have T(pm) → T(p). On the other hand, pm

w→ p implies
that

∫
Z uT dpm → ∫

Z uT dp since uT ∈ C(Z). Therefore, by (9), we find T(pm) →∫
Z uT dp, allowing us to improve (9) to

T(p) =
∫

Z
uT dp for all p ∈ P(Z)(10)

Finally, take any p, q ∈ P(Z), and note that p � q iff p − q ∈ A by Lemma 1. But
by definition of � we have p − q ∈ A iff T(p − q) ≥ 0 for all T ∈ �, which holds
iff T(p) − T(q) ≥ 0 for all T ∈ � due to the linearity of Ts. Using (10), therefore,
we have

p � q iff
∫

Z
u dp ≥

∫
Z

u dq for all u ∈ U

where U stands for the convex hull of {uT : T ∈ �}. The proof is complete. �

REMARK 2. Implicit in this proof is that �R admits a representation of the form
(2) whenever it is well defined and cone{p − q : (p, q) ∈ R} is closed in the linear
span of P(Z). This observation, along with Lemma 1, yields the general strategy
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of proof behind our representation theorems. As noted earlier, this strategy is
suggested by the work of Aumann (1962).

PROOF OF THEOREM 2. Let � = �R where R = {(p1, q1), . . . , (pk, qk)} ⊆ P(Z).
Define

A :=
{

x ∈ R|Z| : x =
k∑

i=1

λi (pi − qi ) for some λ1, . . . , λk ≥ 0

}

This set is obviously the smallest convex cone that is generated by a finite number
of points, and thus by the Minkowski–Weyl theorem, it must be polyhedral.20 This
means that there exist finitely many functions u1, . . . , un ∈ RZ such that A = {x ∈
R|Z| :

∑
z∈Z u j (z)x(z) ≥ 0 for each j}. But by Lemma 1, we have p � q iff p − q ∈ A

for each p, q ∈ P(Z), and combining these two findings establishes (3).
Conversely, take any preorder � that is defined on P(Z) by (3) for some

u : Z → Rn, n ∈ N. Define B := ∪λ>0λ(P(Z) − P(Z)) and note that {x ∈ B :∑
z∈Z u j (z)x(z) = 0} is a hyperplane in R|Z| that passes through the origin. Next

define A := ∩n
j=1{x ∈ B :

∑
z∈Z u j (z)x(z) ≥ 0} and note that p � q iff p − q ∈ A

for any p, q ∈ P(Z). Since A is a polyhedral cone, it must be finitely generated by
the Minkowski–Weyl theorem. This means that there exist finitely many x1, . . . , xk

in B such that A = {∑k
i=1 λi xi : λ1, . . . , λk ≥ 0}. Clearly, we can assume that each

xi can be written as the difference of two probability vectors pi and qi . Now define

R := {(pi , qi ) : i = 1, . . . , k} ∪ {(qi , pi ) : qi − pi ∈ A}

Clearly, if (pi , qi ) ∈ PR, then qi − pi /∈ A so that pi � qi must hold. Thus � is
a proper extension of R that satisfies the independence axiom, which, in turn,
implies that �R exists. But then, by Lemma 1, p �R q iff p − q ∈ A, and hence,
� = �R. �

PROOF OF THEOREM 3. Since the proof follows the same chain of reasoning that
yielded Theorem 1, it will suffice here to provide only a sketch. We now take V(Z)
as the span of H(Z), and define A := cone{h − g : (h, g) ∈ R}. By Lemma 3, A is
a closed convex cone, and hence we may use the Hahn–Banach theorem to find
a set � ⊆ C(V(Z)) such that µ ∈ A iff T(µ) ≥ 0 for all T ∈ �. By the linearity of
any such T, we have, for all µ = (µs)s∈S ∈ V(Z),

T ((µs)s∈S) = T
( ∑

s∈S

(µs, 0−s)
)

=
∑
s∈S

T(µs, 0−s) =
∑
s∈S

Ts(µs)

20 The version of the Minkowski–Weyl theorem we use here states that a convex cone in Rd is
polyhedral (i.e., it is the intersection of a finite number of closed half spaces) if, and only if, it is the
smallest convex cone that is generated by a finite number of points (i.e., it is a finitely generated cone)
in Rd . See, for instance, Rockafellar (1970, Theorem 19.1).
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where Ts(σ ) := T(σ, 0−s) for each σ ∈ span(Ps(Z)) and s ∈ S. It is readily checked
that Ts is linear for each s. Therefore, the standard induction argument (that we
have detailed above) yields

Ts(p) =
∫

Z
uT,s dp for all p ∈ Ps(Z)

for some uT,s ∈ C(Z), s ∈ S. But then, after checking that Lemma 1 applies to
horse race lotteries without modification, we conclude that (5) holds for each
h, g ∈ H(Z), provided that we choose U := {(uT,s)s∈S : T ∈ �}. �

PROOF OF THEOREM 4. Since the “if” part of the claim can be demonstrated
quite easily, we shall focus here rather on the “only if” part. Let U and V be
any two sets that represent � . Our aim is to show that 〈U〉 = 〈V〉. To derive a
contradiction, suppose that we can find a v in 〈V〉 \ 〈U〉. Since 〈U〉 is a closed
convex set in the Banach space C(Z), we can strictly separate v from 〈U〉 by a
closed hyperplane. That is, there exists a scalar α and a continuous functional
T ∈ C(Z)∗ such that T(v) > α ≥ supu∈〈U〉 T(u). Observe that we must have α ≥ 0
since 0 ∈ 〈U〉. Moreover, we have

α

2m
≥ 1

2m
sup
u∈〈U〉

T(u) = sup
u∈〈U〉

T
(

u
2m

)
= sup

u∈〈U〉
T(u) for all m = 1, 2, . . .

Combining these two observations, it follows that

T(v) > 0 ≥ T(u) for all u ∈ 〈U〉(11)

By the Riesz representation theorem, on the other hand, there exists a finite signed
Borel measure µ on Z such that

T(w) =
∫

Z
w dµ for all w ∈ C(Z)(12)

By (11), we have α ≥ θT(1Z) = θµ(Z) for any real θ , and this implies that µ(Z) =
0. Clearly, we can write µ as the difference of two positive finite Borel measures
on C(Z), say µ+ and µ−. We have µ = µ+ − µ− and hence µ+(Z) = µ−(Z) =
c ≥ 0. If c = 0 was the case, then we would have µ+ = µ− = µ = 0, which would
contradict the fact that T(v) > 0. Thus c > 0, and we can define p := µ+/c and
q := µ−/c as two Borel probability measures on Z. We now invoke (12) to get
T(w)/c = ∫

Z w dp − ∫
Z w dq for all w ∈ C(Z), so that, by (11), we may conclude

that ∫
Z

v dp >

∫
Z

v dq and
∫

Z
u dq ≥

∫
Z

u dp for all u ∈ 〈U〉

But this is a contradiction since these inequalities cannot hold simultaneously
given that both U and V represent �. We may thus conclude that 〈V〉 ⊆ 〈U〉. The
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converse containment is proved by interchanging the roles ofU andV in the above
argument. �

PROOF OF PROPOSITION 1. Define R = {(δz, δz′) : z > z′}, and observe that �R is
well defined by Lemma 2. To prove the first part of Proposition 1, it will thus suffice
here to show that ≥ FSD equals the closure of �R. To see this, begin by observing
that ≥FSD is a proper extension of R that satisfies the independence axiom. Since
≥FSD is continuous, we then have cl(�R) ⊆ ≥FSD.

We shall next show that cl(�R) ⊇ ≥FSD. To this end, pick any two simple lotteries
p, q ∈ Ps(Z) with p ≥FSD q. By definition, we have

∑i p(zj ) ≤ ∑i q(zj ) for all
i = 1, . . . , k, where S(p − q) = {z1, . . . , zk} (for some k) with z1 < · · · < zk. Define

λi :=
i∑

j=1

(q(zj ) − p(zj )), i = 1, . . . , k − 1

and observe that we then have

(p − q)(z1) = −λ1 and (p − q)(zj ) = (λ j−1 − λ j ), j = 2, . . . , k

Combining these equations with the hypothesis that S(p − q) = {z1, . . . , zk}, we
may write

p − q =
k−1∑
i=1

λi (δzi+1 − δzi )

By applying Lemma 1, therefore, we find p �R q.
To extend this observation to the case of all Borel probability measures, take any

p, q ∈ P(Z) with p ≥FSD q. It is well known that one can approximate a monotonic
function (which is necessarily of bounded variation) by simple functions both from
above and below. Applying this fact to the distribution functions induced by p and
q, we can find two sequences of simple probability measures (pm) and (qm) such
that pm

w→ p and qm
w→ q with

pm ≥FSD p ≥FSD q ≥FSD qm m = 1, 2, . . .

Now fix any positive integer M and observe that pM ≥FSD qm for each m. By using
the observation established in the previous paragraph, then, we have pM �R qm

for each m. This clearly implies that (pM, q) ∈ cl(�R). Since this is valid for an
arbitrary M ∈ N, passing to the limit one more time yields (p, q) ∈ cl(�R). Hence
≥FSD⊆ cl(�R) and we are done.

The “if” part of the second part of the proposition is easy: If � is a proper
extension of ≥FSD, then R := � is monotonic, and � = �R . To go the other
way, we fix a continuous preference relation � on P(Z) that is generated by a
monotonic procedure, and establish two elementary observations.
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NOTATION. For any p ∈ P(Z), we define m(p) := max S(p),21 and let Fp stand
for the distribution function induced by p.

CLAIM 1. δm(p) � p holds for all p ∈ P(Z) with |S(p)| ≥ 2.

PROOF OF CLAIM 1. |S(p)| ≥ 2 implies that there exists a z ∈ S(p)\{m(p)} such
that F(z) > 0. Pick any ε ∈ (0, F(z)) and define p′ := εδz + (1 − ε)δm(p). Since
p′ >FSD p, we have p′ � p by the first part of Proposition 1. But since � is
generated by a monotonic procedure, we also have δm(p) � p′, so by transitivity,
δm(p) � p. �

CLAIM 2. For any r, q ∈ P(Z) with r >FSD q, if there exist 0 ≤ a < b ≤ 1 with

Fr (t) = Fq(t) for all t /∈ [a, b) and Fr (t) = Fr (a) for all t ∈ [a, b)

then r � q.

PROOF OF CLAIM 2. Since r >FSD q, we have Fr ≤ Fq with strict inequality at
some point in [0, 1]. So since Fr = Fq on R\[a, b), we must have Fr (b) − Fr (a−) =
Fq(b) − Fq(a−) =: β > 0. Define the distribution functions

G(t) :=
{ Fr (t)

1−β
, t < b

Fr (t)−β

1−β
, t ≥ b

and H(t) :=
{

Fq(t)−Fr (t)
β

, t < b

1, t ≥ b

and denote the induced Lebesgue–Stieltjes probability measures by rG and rH.
It is easily checked that r = βδb + (1 − β)rG and q = βrH + (1 − β)rG. If rH is a
degenerate lottery, then r � q obtains directly from the definition of monotonic
generation. If, on the other hand, |S(rH)| ≥ 2, then we apply Claim 1 and the
independence axiom to get the desired conclusion. �

We are now ready to complete the proof of Proposition 1. Pick any lotteries p
and q in P(Z) with p >FSD q. We wish to show that p � q. By definition, we have
Fp ≤ Fq and Fp(b) < Fq(b) for some b ∈ (0, 1). Since the continuity points of Fq

is dense in R, we may assume that b is a continuity point of Fq. Now define

a := inf
{
t ∈ R :Fq(t) ≥ 1

2 Fp(b) + 1
2 Fq(b)

}
Since Fp(0−) = Fq(0−) = 0, Fp(1) = Fq(1) = 1, and Fq is continuous at b, we
have 0 ≤ a < b ≤ 1. We next define

R(t) :=
{

1
2 Fp(b) + 1

2 Fq(b), a ≤ t < b

Fq(t), otherwise

21 Since S(p) is a closed set by definition, and Z is compact, S(p) is compact and hence m(p) is well
defined.
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and observe that R is a distribution function on the line. (The only nontrivial part
of this fact is that R(a−) ≤ R(a), which follows from the definition of a.) Let r
stand for the Lebesgue–Stieltjes measure induced by R. Since, Fp ≤ R, we have
p ≥FSD r , so by the first part of Proposition 1, p � r . But Claim 2 applies to r and
q, so we have r � q, and by transitivity of � , we find p � q. �

PROOF OF PROPOSITION 2. Take R to be the set of all (δE(p), p) such that p is a
simple and nondegenerate probability measure on Z. It is readily observed that
�R ⊆ ≥SSD and hence cl(�R) is well defined. The proof will then be complete
if we can show that cl(�R) ⊇ ≥SSD. We shall do this only in terms of the simple
probability measures, for the extension to the general case can be achieved just
as in the proof of Proposition 1 by using the denseness of Ps(Z) in P(Z).

Take any p, q ∈ Ps(Z) such that p ≥SSD q, and write S(p) ∪ S(q) = {z1, . . . , zm}.
This means that q is a mean preserving spread of p so that there must exist simple
probability measures r1, . . . , rm such that

q(zj ) =
m∑

i=1

p(zi )r i (zj ) j = 1, . . . , m

and

E(r i ) =
m∑

j=1

zjr i (zj ) = zi , i = 1, . . . , m.

But then, for each j ,

q(zj ) +
m∑

i=1

p(zi )(δzi (zj ) − r i (zj )) =
m∑

i=1

(
p(zi )r i (zj ) + p(zi )

(
δzi (zj ) − r i (zj )

))

=
m∑

i=1

p(zi )δzi (zj )

= p(zj )

so that, by letting λi := p(zi ), i = 1, . . . , m, we obtain p − q = ∑m
λi (δzi − r i ),

which yields p �R q by Lemma 1.
The proof of the second part of the proposition is similar to the proof we gave

for the corresponding part of Proposition 1, and is omitted here for brevity. �

PROOF OF THEOREM 5. Let � be a continuous preference relation on P(Z) that
is generated by a standard procedure so that � = �R for some monotonic and
risk-averse R. By Proposition 1, �R must be a proper extension of the first-order
stochastic dominance ordering. Therefore, �R satisfies all three axioms of Mitra
and Ok (2000), and thus applying Theorem 1 of that article, we find a set U of
increasing utility functions such that p � q if and only if

∫
Z u dp ≥ ∫

Z u dq for all
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u ∈ U . That this set must be strictly increasing and concave is easily verified. To
prove the converse, assume that there exists a set U with the stated properties,
and let R := � . Then R is a monotonic and risk-averse set, and we trivially have
� = �R . �
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